Electrical vehicle modeling: A fuzzy logic model for regenerative braking

نویسندگان

  • Ricardo Maia
  • Marco Silva
  • Rui Araújo
  • Urbano Nunes
چکیده

This paper presents a fuzzy logic model of regenerative braking (FLmRB) for modeling EVs’ regenerative braking systems (RBSs). The model has the vehicle’s acceleration and jerk, and the road inclination as input variables, and the output of the FLmRB is the regeneration factor, i.e. the ratio of regenerative braking force to the total braking force. The regeneration factor expresses the percentage of energy recovered to the battery from braking. The purpose of the FLmRB development is to create realistic EV models using as least as possible manufacturers intellectual property data, and avoiding the use of EV on-board sensors. To tune the model, real data was gathered from short and long-distance field tests with a Nissan LEAF and compared with two types of simulations, one using the proposed FLmRB, and the other considering that all the braking force/energy is converted to electric current and returned back to charge the battery (100% regeneration). The results show that the FLmRB can successfully infer the regenerative braking factor from the measured EV acceleration and jerk, and road inclination, without any knowledge about the EV brake control strategy. © 2015 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Control Strategy of Battery Management for PHEV during Regenerative Braking

Based on analyzing the structure of Parallel Hybrid Electric Vehicle (PHEV) and its operation during regenerative braking, a fuzzy control strategy of battery management is proposed. Firstly, the state of charging is estimated by establishing the mathematical relationship between open circuit voltage and the internal resistance model. Secondly, the fuzzy logic controller is designed in regenera...

متن کامل

Antilock Regenerative Braking System Design for a Hybrid Electric Vehicle

Hybrid electric vehicles employ a hydraulic braking system and a regenerative braking system together to provide enhanced braking performance and energy regeneration. In this paper an integrated braking system is proposed for an electric hybrid vehicle that include a hydraulic braking system and a regenerative braking system which is functionally connected to an electric traction motor. In the ...

متن کامل

Integrated control of electromechanical braking and regenerative braking in plug-in hybrid electric vehicles

This paper proposes the use of Electromechanical Brakes (EMB) in combination with regenerative braking in PHEV so braking force can be distributed to front and rear axles according to an optimal curve instead of a linear line. Therefore, more braking force will be distributed to front axle, which will offer more kinetic energy for regenerative braking. Fuzzy logic control is used to allocate br...

متن کامل

Intelligent Regenerative Braking Control of Hybrid Buses

This paper proposes an intelligent regenerative braking control of hybrid buses through a neuro-fuzzy controller (NFC) by combining the fuzzy logic algorithm and the artificial neural networks. The braking torque distribution between the integrating starting generator (ISG) and the friction disc brake is addressed through the proposed NFC. The results of simulation and validation show that the ...

متن کامل

An Intelligent Regenerative Braking Strategy for Electric Vehicles

Regenerative braking is an effective approach for electric vehicles (EVs) to extend their driving range. A fuzzy-logic-based regenerative braking strategy (RBS) integrated with series regenerative braking is developed in this paper to advance the level of energy-savings. From the viewpoint of securing car stability in braking operations, the braking force distribution between the front and rear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2015